
LA-UR-21-22897
Approved for public release; distribution is unlimited.

Title: MATAR: Data-Oriented Sparse Data Representation

Author(s): Tafolla, Tanya
Nelluvelil, Eappen Sebastian
Moore, Jacob Linley
Dunning, Daniel Jeffrey
Morgan, Nathaniel Ray
Robey, Robert W.

Intended for: SIAM Conference on Computational Science and Engineering (Virtual)

Issued: 2021-03-24

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

MATAR: Data-Oriented Sparse Data Representation

Tanya V. Tafolla1 , Eappen Nelluvelil4, Jacob Moore2, Danniel
Dunning5, Nathaniel Morgan3, Robert Robey3

1University of California, Merced
2Mississippi State University

3Los Alamos National Laboratory
4Rice University

5Texas Tech University

MS 30: Software Productivity and Sustainability in CSE
SIAM Conference on Computational Science and Engineering

March 1, 2021

Tanya Tafolla (UCM) MATAR SIAM CSE21 1 / 32

Daniel

Change in Performance

There are two fundamental aspects of a simulation: the movement of data
from memory, and the computation.
Both or one of these aspects will be a limiting factor for the simulation.

FLOPs or memory bound.

FLOPs limitations can be addressed with more powerful architecture -
hardware issue.

Memory bound limitations are harder to address because one needs to
be more data conscious.

Performance Focus
Focus on feeds instead of speeds.

Feeds: ability to get the data to the processor.

Speeds: time it takes to execute a FLOP or other basic computer
instruction.

Goal
Develop a C++ library of data-oriented sparse data representations that is
performant and portable across di↵erent architectures.

Tanya Tafolla (UCM) MATAR SIAM CSE21 2 / 32

Change in Performance

There are two fundamental aspects of a simulation: the movement of data
from memory, and the computation.
Both or one of these aspects will be a limiting factor for the simulation.
FLOPs or memory bound.

FLOPs limitations can be addressed with more powerful architecture -
hardware issue.

Memory bound limitations are harder to address because one needs to
be more data conscious.

Performance Focus
Focus on feeds instead of speeds.

Feeds: ability to get the data to the processor.

Speeds: time it takes to execute a FLOP or other basic computer
instruction.

Goal
Develop a C++ library of data-oriented sparse data representations that is
performant and portable across di↵erent architectures.

Tanya Tafolla (UCM) MATAR SIAM CSE21 2 / 32

Change in Performance

There are two fundamental aspects of a simulation: the movement of data
from memory, and the computation.
Both or one of these aspects will be a limiting factor for the simulation.
FLOPs or memory bound.

FLOPs limitations can be addressed with more powerful architecture -
hardware issue.

Memory bound limitations are harder to address because one needs to
be more data conscious.

Performance Focus
Focus on feeds instead of speeds.

Feeds: ability to get the data to the processor.

Speeds: time it takes to execute a FLOP or other basic computer
instruction.

Goal
Develop a C++ library of data-oriented sparse data representations that is
performant and portable across di↵erent architectures.

Tanya Tafolla (UCM) MATAR SIAM CSE21 2 / 32

Change in Performance

There are two fundamental aspects of a simulation: the movement of data
from memory, and the computation.
Both or one of these aspects will be a limiting factor for the simulation.
FLOPs or memory bound.

FLOPs limitations can be addressed with more powerful architecture -
hardware issue.

Memory bound limitations are harder to address because one needs to
be more data conscious.

Performance Focus
Focus on feeds instead of speeds.

Feeds: ability to get the data to the processor.

Speeds: time it takes to execute a FLOP or other basic computer
instruction.

Goal
Develop a C++ library of data-oriented sparse data representations that is
performant and portable across di↵erent architectures.

Tanya Tafolla (UCM) MATAR SIAM CSE21 2 / 32

Data-Oriented Design

Data-Oriented Design:

Shift the focus from objects to data.

What that means for us: memory layout pattern matches the access
pattern.

Layout = access, then less time is spend loading the data from main
memory; data that is needed for next computation is already in cache.

Tanya Tafolla (UCM) MATAR SIAM CSE21 3 / 32

Data-Oriented Design

Data-Oriented Design:

Shift the focus from objects to data.

What that means for us: memory layout pattern matches the access
pattern.

Layout = access, then less time is spend loading the data from main
memory; data that is needed for next computation is already in cache.

Tanya Tafolla (UCM) MATAR SIAM CSE21 3 / 32

Data-Oriented Design

Data-Oriented Design:

Shift the focus from objects to data.

What that means for us: memory layout pattern matches the access
pattern.

Layout = access, then less time is spend loading the data from main
memory; data that is needed for next computation is already in cache.

Tanya Tafolla (UCM) MATAR SIAM CSE21 3 / 32

The Need for Sparse Representation in Scientific

Computing

Where do we need sparse data storage?

1 2 3

4 5 6

7 8 9

1

2

3

Cell Index Material Index

1
2

3

4

In some applications there can be multiple
materials per cell and for Eulerian

methods, the material moves through the
cell. This results in a ragged memory
layout either cell centric of material

centric. Details in [6].

Polytopal meshes where
the each cell has varying
connectivity points to
represent each cell.

Tanya Tafolla (UCM) MATAR SIAM CSE21 4 / 32

The Need for Sparse Representation in Scientific

Computing

Why address sparse data and How to:

Providing data structures that map problem data e�ciently in
memory will yield better performance. ! Forcing contiguous memory
layout and access patterns.

Commonly used sparse data representations, such as linked list, are
slow and not easily parallelized. ! Developed dynamic and static
ragged arrays.

Want to run simulations on multiple CPU and GPU architectures,
therefore the data needs to be portable without sacrificing
performance. ! GPU version of sparse data structures using Kokkos.

Tanya Tafolla (UCM) MATAR SIAM CSE21 5 / 32

The Need for Sparse Representation in Scientific

Computing

Why address sparse data and How to:

Providing data structures that map problem data e�ciently in
memory will yield better performance. ! Forcing contiguous memory
layout and access patterns.

Commonly used sparse data representations, such as linked list, are
slow and not easily parallelized. ! Developed dynamic and static
ragged arrays.

Want to run simulations on multiple CPU and GPU architectures,
therefore the data needs to be portable without sacrificing
performance. ! GPU version of sparse data structures using Kokkos.

Tanya Tafolla (UCM) MATAR SIAM CSE21 5 / 32

The Need for Sparse Representation in Scientific

Computing

Why address sparse data and How to:

Providing data structures that map problem data e�ciently in
memory will yield better performance. ! Forcing contiguous memory
layout and access patterns.

Commonly used sparse data representations, such as linked list, are
slow and not easily parallelized. ! Developed dynamic and static
ragged arrays.

Want to run simulations on multiple CPU and GPU architectures,
therefore the data needs to be portable without sacrificing
performance. ! GPU version of sparse data structures using Kokkos.

Tanya Tafolla (UCM) MATAR SIAM CSE21 5 / 32

Current Limitations of Existing Frameworks

Tanya Tafolla (UCM) MATAR SIAM CSE21 6 / 32

Limitations of Current Data Structures: Memory Layout

51.4

0 1 2 3 4

6.58

5.97 1.26 4.21 8.14

Computer Memory, 2D Malloc Array[4][5]

1.14 9.24 5.97

5.97

9.14 40.1 1.14 9.24 5.97

9.24 1.14 5.97 6.58 9.24

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

PTR0

1

2

3

PTR

PTR

PTR

First Index

Second Index Global Memory
Page 1

Page 2

Using malloc and new in C and C++, respectively, does not necessarily
result in contiguous allocated memory. Having the data scattered through
global memory will lead to performance issues as more calls to main
memory need to be made in order to obtain necessary data.

Tanya Tafolla (UCM) MATAR SIAM CSE21 7 / 32

Other Performance Libraries:

1 Boost:
Provides multi-dimensional array class templates for C++
(n-dimensional contiguous arrays).
Other great features: sub-views, memory layout style, how to index
arrays, reshape and resize.

2 Matrix Template Library: Provides flexible multi-dimensional data
structures for numerical solvers.

3 Warwick Data Store:
Provides multi-dimensional array capabilities with a focus of letting
programmers write data structures.

Collection of 3 classes: controller (high-level functionality to
programmers), variable (allocate and manage memory), view (quick
and easy access to underlying memory for data structure).

However, each of these tools have a targeted purposes. They focus on
CPU application space with regular multi-dimensional arrays.

Tanya Tafolla (UCM) MATAR SIAM CSE21 8 / 32

Other Performance Libraries:

1 Boost:
Provides multi-dimensional array class templates for C++
(n-dimensional contiguous arrays).
Other great features: sub-views, memory layout style, how to index
arrays, reshape and resize.

2 Matrix Template Library: Provides flexible multi-dimensional data
structures for numerical solvers.

3 Warwick Data Store:
Provides multi-dimensional array capabilities with a focus of letting
programmers write data structures.
Collection of 3 classes: controller (high-level functionality to
programmers), variable (allocate and manage memory), view (quick
and easy access to underlying memory for data structure).

However, each of these tools have a targeted purposes. They focus on
CPU application space with regular multi-dimensional arrays.

Tanya Tafolla (UCM) MATAR SIAM CSE21 8 / 32

Other Performance Libraries:

1 Boost:
Provides multi-dimensional array class templates for C++
(n-dimensional contiguous arrays).
Other great features: sub-views, memory layout style, how to index
arrays, reshape and resize.

2 Matrix Template Library: Provides flexible multi-dimensional data
structures for numerical solvers.

3 Warwick Data Store:
Provides multi-dimensional array capabilities with a focus of letting
programmers write data structures.
Collection of 3 classes: controller (high-level functionality to
programmers), variable (allocate and manage memory), view (quick
and easy access to underlying memory for data structure).

However, each of these tools have a targeted purposes. They focus on
CPU application space with regular multi-dimensional arrays.

Tanya Tafolla (UCM) MATAR SIAM CSE21 8 / 32

Sparse Data Addressed: Linked List

1 Pros:
add/remove elements anywhere throughout the list.

2 Cons:
Have to traverse the entire list to access an element.
Repeatedly adding/removing elements can cause re-allocations of heap
memory.
Not guaranteed to be contiguous in memory.
Can not be easily ported to GPU; how do we keep track of all the
pointers?

Tanya Tafolla (UCM) MATAR SIAM CSE21 9 / 32

Introduction to MATAR

Tanya Tafolla (UCM) MATAR SIAM CSE21 10 / 32

MATAR

To tackle the sparse representation, we develop MATAR.
A C++ library of contiguous, data-oriented matrices and arrays.

MATAR addresses:

Performant: contiguous dense and sparse data representation.

Portable: across CPU and GPUs (use Kokkos for GPU).

Productivity: easy to create,use and integrate. User does not worry
about memory management.

Tanya Tafolla (UCM) MATAR SIAM CSE21 11 / 32

MATAR

To tackle the sparse representation, we develop MATAR.
A C++ library of contiguous, data-oriented matrices and arrays.
MATAR addresses:

Performant: contiguous dense and sparse data representation.

Portable: across CPU and GPUs (use Kokkos for GPU).

Productivity: easy to create,use and integrate. User does not worry
about memory management.

Tanya Tafolla (UCM) MATAR SIAM CSE21 11 / 32

MATAR Data Structures Overview

Dense Data Representation:

Ac
ce

ss
 p

at
te

rn

Indexing pattern

0-indexed 1-indexed

R
ow

 m
aj

or
C

ol
um

n
m

aj
or

FArray
ViewFArray

CArray
ViewCArray

FMatrix
ViewFMatrix

CMatrix
ViewCMatrix

Sparse Data Representation:

Ac
ce

ss
 p

at
te

rn

Indexing pattern

0-indexed

R
ow

 m
aj

or
C

ol
um

n
m

aj
or

RaggedDownArray
DynamicRaggedDownArray

SparseColArray

RaggedRightArray
DynamicRaggedRightArray

SparseRowArray

Tanya Tafolla (UCM) MATAR SIAM CSE21 12 / 32

MATAR Sparse Data Structure: Ragged-Right

51.4

0 2 6 9

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10

6.58 5.97 1.26 4.21 8.14 9.14 40.1 1.14 9.24 1.14

51.4 6.58

5.97 1.26 4.21 8.14

9.14 40.1 1.14

9.24 1.14

7.24 2.14 1.74

11

4

7.24 2.14 1.74

11 12 13

Data Start Index

Computer Memory

Figure describing the layout of a ragged-right -i.e the columns for each row
vary. The user accesses the data as a 2D array,(i,j), but the data in
memory is stored as a contiguous 1D array by rows.

Tanya Tafolla (UCM) MATAR SIAM CSE21 13 / 32

Ragged Right Example

Building a Ragged-Right for the cell centric multi-material matrix example.
The cell information is contiguous in memory.Focus is the material in each
cell.

Create the array: auto multimat rr =

RaggedRightArray<double>(row length arr, row dim)

Accessing data: multimat rr(i,j)

Tanya Tafolla (UCM) MATAR SIAM CSE21 14 / 32

MATAR Sparse Data Structure: Ragged-Down

Figure describing the layout of a ragged-down -i.e the rows for each
column vary. The user accesses the data as a 2D array,(i,j), but the
data in memory is stored as a contiguous 1D array by columns.

Tanya Tafolla (UCM) MATAR SIAM CSE21 15 / 32

Ragged Down Example

Building a Ragged-Down for the material centric multi-material matrix
example. The data is contiguous by material. Focus is the cells that
containg the material.

Create the array: auto multimat rr =

RaggedRightDown<double>(col length arr, col dim)

Accessing data: multimat rr(i,j)

Tanya Tafolla (UCM) MATAR SIAM CSE21 16 / 32

MATAR Sparse Data Structure: Dynamic Ragged-Right

51.4

0 5 10

0 1 2

0 1 2 3 4 5 6 7 8 9 10

6.58 5.97 1.26 4.21 8.14

51.4

5.97 1.26 4.21

9.14 40.1 1.14

9.24 1.14

7.24 2.14 1.74

11 12 13

Data

Start (green) and Stop (red) Index

Computer Memory

6.58

8.14

9.14 40.1 1.14 9.24 1.14

15 16 17 1814 19

15

3

1 8 12 16

Dynamic ragged-right has memory bu↵ers available in order to add more
entries at the end of each row.

Tanya Tafolla (UCM) MATAR SIAM CSE21 17 / 32

Dynamic Ragged Right Array Example

Multi-material matrix with dynamic ragged arrays. White boxes are
bu↵ers, columns vary but the rows are a fixed size. The information for
each cell is contiguous in memory.

Tanya Tafolla (UCM) MATAR SIAM CSE21 18 / 32

MATAR Sparse Data Structure: Dynamic Ragged-Down

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Data

Computer Memory

51.4

5.97

9.14

9.24

6.58

1.26

40.1

1.14

4.21

1.14

8.14

1.74

2.14

7.24

51.4 5.97 9.14 9.24 6.58 1.26 40.1 1.14 2.14 4.21 1.14 1.74 8.14 7.24

0 5 10

0 1 2

Start (green) and Stop (red) Index
3

3 9 12 15 16

15 16 17 1814 19

Describing the dynamic ragged-down array -i.e the rows of each column
vary. Bu↵er to add more data at the end of each column.

Tanya Tafolla (UCM) MATAR SIAM CSE21 19 / 32

Dynamic Ragged Down Array Example

Multi-material matrix with dynamic ragged arrays. White boxes are
bu↵ers, rows vary but the columns are a fixed size. The material is stored
contiguous in memory.

Tanya Tafolla (UCM) MATAR SIAM CSE21 20 / 32

Sparse Data Representation Summary

1 RaggedRight and RaggedDown

Both dimensions are fixed when created. i.e how many columns each
row of the RaggedRight array is known and unchanged when created..
Varying number of rows/columns.

2 DynamicRaggedRight and DynamicRaggedDown

One of the dimensions is fixed (either rows or columns).
Data can only be added at the bu↵ers, i.e it will be stored at the end of
the row/column.
Addresses the contiguous data layout issue of linked list, but does not
have the other insertion/deletion properties.

Tanya Tafolla (UCM) MATAR SIAM CSE21 21 / 32

Sparse Data Representation Summary

1 RaggedRight and RaggedDown

Both dimensions are fixed when created. i.e how many columns each
row of the RaggedRight array is known and unchanged when created..
Varying number of rows/columns.

2 DynamicRaggedRight and DynamicRaggedDown

One of the dimensions is fixed (either rows or columns).
Data can only be added at the bu↵ers, i.e it will be stored at the end of
the row/column.
Addresses the contiguous data layout issue of linked list, but does not
have the other insertion/deletion properties.

Tanya Tafolla (UCM) MATAR SIAM CSE21 21 / 32

Application Code: HOSS

About Hybirid Optimization Software Suite (HOSS):

HOSS is a geophysical application developed at LANL.

The software integrates solid mechanics using finite-discrete element
method and computational fluid dynamics.

Simulate deformation and failure of material with applications to oil,
gas, mining and defense.

Provides a real-world test for the technique in a multi-physics
production application.

MATAR + HOSS
Use data from a contact detection algorithm to time adding elements,
traversing, and simple computations of a linked list and a dynamic

ragged-right.

Tanya Tafolla (UCM) MATAR SIAM CSE21 22 / 32

Application Code: HOSS

About Hybirid Optimization Software Suite (HOSS):

HOSS is a geophysical application developed at LANL.

The software integrates solid mechanics using finite-discrete element
method and computational fluid dynamics.

Simulate deformation and failure of material with applications to oil,
gas, mining and defense.

Provides a real-world test for the technique in a multi-physics
production application.

MATAR + HOSS
Use data from a contact detection algorithm to time adding elements,
traversing, and simple computations of a linked list and a dynamic

ragged-right.

Tanya Tafolla (UCM) MATAR SIAM CSE21 22 / 32

Linked List vs. Dynamic Ragged-Right

From the contact detection data:

Every element within the simulation has it’s own linked list containing
neighbours.

As the simulation progress, nodes are added if elements come into
contact. Removed if no longer in contact.

Size of test problem: 10 million elements.

Two test were conducted:
One iteration of the contact detection to evaluate time it takes to build
the data structure.
Quantify di↵erence in speed between the two structures while being
used.

Tanya Tafolla (UCM) MATAR SIAM CSE21 23 / 32

Linked List vs. Dynamic Ragged-Right

From the contact detection data:

Every element within the simulation has it’s own linked list containing
neighbours.

As the simulation progress, nodes are added if elements come into
contact. Removed if no longer in contact.

Size of test problem: 10 million elements.

Two test were conducted:
One iteration of the contact detection to evaluate time it takes to build
the data structure.
Quantify di↵erence in speed between the two structures while being
used.

Tanya Tafolla (UCM) MATAR SIAM CSE21 23 / 32

Linked List vs. Dynamic Ragged-Right

From the contact detection data:

Every element within the simulation has it’s own linked list containing
neighbours.

As the simulation progress, nodes are added if elements come into
contact. Removed if no longer in contact.

Size of test problem: 10 million elements.

Two test were conducted:
One iteration of the contact detection to evaluate time it takes to build
the data structure.
Quantify di↵erence in speed between the two structures while being
used.

Tanya Tafolla (UCM) MATAR SIAM CSE21 23 / 32

Linked List vs. Dynamic Ragged-Right

From the contact detection data:

Every element within the simulation has it’s own linked list containing
neighbours.

As the simulation progress, nodes are added if elements come into
contact. Removed if no longer in contact.

Size of test problem: 10 million elements.

Two test were conducted:
One iteration of the contact detection to evaluate time it takes to build
the data structure.
Quantify di↵erence in speed between the two structures while being
used.

Tanya Tafolla (UCM) MATAR SIAM CSE21 23 / 32

Linked List vs.Dynamic Ragged-Right: Building the

Structure

Initial performance test: building and initializing the data structure.

Performance Metric LL DRRA

Run time [s] 16.17 15.70
DP MFLOP/s 119.98 123.72

AVX DP MFLOP/s 0.76 0.85

Table: LIKWID results for the building and initializng of the data structures,
showing that the DRRA is about 3% faster.

Tanya Tafolla (UCM) MATAR SIAM CSE21 24 / 32

Linked List vs.Dynamic Ragged-Right: Quantify Speed

Di↵erence

To simulate production run, row statistics (row avg, min, max, sum) were
calculated over each row for 10k iterations.

Performance Metric LL DRRA

Runtime [s] 580.47 325.67
DP MFLOP/s 453.95 568.56

AVX DP MFLOP/s 0 0

Table: LIKWID results on competing HOSS implementation. We see a drastic
improvement in runtime with the DRRA over the linked list. We attribute the
speed up to the contiguous memory access, which minimizes the amount of
memory that has to be loaded.

Tanya Tafolla (UCM) MATAR SIAM CSE21 25 / 32

Portability of MATAR to GPU

Tanya Tafolla (UCM) MATAR SIAM CSE21 26 / 32

Focus on Portability

GPU programming has become more popular for large scale computing.
Our focus is designing the data structures to be portable across various
architectures.

Tanya Tafolla (UCM) MATAR SIAM CSE21 27 / 32

MATAR + Kokkos

Kokkos is a C++ parallel programming portability library.

Uses OpenMP, CUDA, PThreads as backend programming models.

MATAR uses Kokko’s Views as a backend in order to represent the
dense and sparse arrays on the GPU.

+

MATAR + Kokkos = sparse and dense data representationon GPU

Tanya Tafolla (UCM) MATAR SIAM CSE21 28 / 32

Dense Datatype + Kokkos

Tested if there is any overhead using Kokko’s datatypes as a backend
using Stream Benchmark.

Data type Copy Scale Sum Triad Dot. Prod
Kokkos View 6.57 6.49 8.51 9.00 7.08

CArray 6.56 6.26 8.16 8.26 6.37

Table: Comparison of 3D MATAR CArray and regular Kokko’s View. Dimension is
256⇥ 256⇥ 256 on IBM Power 9 CPU using OpenMP. Units are in milliseconds

Data type Copy Scale Sum Triad Dot. Prod
Kokkos View 0.41 0.41 0.49 0.49 1.69

FArray 0.45 0.45 0.50 0.50 1.83

Table: Comparison of 3D MATAR FArray and regular Kokko’s View. Dimension is
256⇥ 256⇥ 256 on NVIDIA V100 GPU. Units are in milliseconds

Tanya Tafolla (UCM) MATAR SIAM CSE21 29 / 32

Dense Datatype + Kokkos

Tested if there is any overhead using Kokko’s datatypes as a backend
using Stream Benchmark.

Data type Copy Scale Sum Triad Dot. Prod
Kokkos View 6.57 6.49 8.51 9.00 7.08

CArray 6.56 6.26 8.16 8.26 6.37

Table: Comparison of 3D MATAR CArray and regular Kokko’s View. Dimension is
256⇥ 256⇥ 256 on IBM Power 9 CPU using OpenMP. Units are in milliseconds

Data type Copy Scale Sum Triad Dot. Prod
Kokkos View 0.41 0.41 0.49 0.49 1.69

FArray 0.45 0.45 0.50 0.50 1.83

Table: Comparison of 3D MATAR FArray and regular Kokko’s View. Dimension is
256⇥ 256⇥ 256 on NVIDIA V100 GPU. Units are in milliseconds

Tanya Tafolla (UCM) MATAR SIAM CSE21 29 / 32

Matrix-Matrix Multiply Portability

Figure showing the scaling for
MM across serial, CPU
parallel and GPU parallel.

Linear scaling is observed
on the multi-core CPU.

Show portability of the
problem; significant
speed up with minimal
overhead by using
Kokko’s Views.

Tanya Tafolla (UCM) MATAR SIAM CSE21 30 / 32

Conclusion

We present MATAR: a portable, performant C++ library that can for
both dense and sparse data representation.

We are able to use Kokkos without significant any overhead on the
dense data structures.

Speed up on common linear algebra algorithms and on a contact
detection algorithm HOSS.

Tanya Tafolla (UCM) MATAR SIAM CSE21 31 / 32

References

1 MATAR: https://github.com/lanl/MATAR Link

2 Boost: https://www.boost.org Link

3 HOSS: Link

4 Warwich Data Store: R.O. Kirk, M, Nolten, R. Kevis, T.R. Law, S.
Mahenswaran, S.A. Wright, S. Powell, G.R. Mudalige, S.A Jarvis,
Warwick data store: A data structure abstraction library. in 2020
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems.

5 Matrix Template Library: J. Siek, A. Lumsdaine, The matrix template
library: A generic programming approach to high performance
numerical linear algebra.

6 Multimaterial study: S. Fogerty, el al. A comparative study of
multi-material data structures for computational physics applications.
Computer and Mathematics with Applications (2018).

Tanya Tafolla (UCM) MATAR SIAM CSE21 32 / 32

